Generative-Discriminative Variational Model for Visual Recognition

نویسندگان

  • Chih-Kuan Yeh
  • Yao-Hung Tsai
  • Yu-Chiang Frank Wang
چکیده

The paradigm shift from shallow classifiers with hand-crafted features to endto-end trainable deep learning models has shown significant improvements on supervised learning tasks. Despite the promising power of deep neural networks (DNN), how to alleviate overfitting during training has been a research topic of interest. In this paper, we present a Generative-Discriminative Variational Model (GDVM) for visual classification, in which we introduce a latent variable inferred from inputs for exhibiting generative abilities towards prediction. In other words, our GDVM casts the supervised learning task as a generative learning process, with data discrimination to be jointly exploited for improved classification. In our experiments, we consider the tasks of multi-class classification, multi-label classification, and zero-shot learning. We show that our GDVM performs favorably against the baselines or recent generative DNN models.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Discriminative Regularization for Generative Models

We explore the question of whether the representations learned by classifiers can be used to enhance the quality of generative models. Our conjecture is that labels correspond to characteristics of natural data which are most salient to humans: identity in faces, objects in images, and utterances in speech. We propose to take advantage of this by using the representations from discriminative cl...

متن کامل

A Generative Parser with a Discriminative Recognition Algorithm

Generative models defining joint distributions over parse trees and sentences are useful for parsing and language modeling, but impose restrictions on the scope of features and are often outperformed by discriminative models. We propose a framework for parsing and language modeling which marries a generative model with a discriminative recognition model in an encoder-decoder setting. We provide...

متن کامل

Vinod Nair A thesis submitted in conformity with the requirements for the degree of Doctor of Philosophy

Visual Object Recognition Using Generative Models of Images Vinod Nair Doctor of Philosophy Graduate Department of Computer Science University of Toronto 2010 Visual object recognition is one of the key human capabilities that we would like machines to have. The problem is the following: given an image of an object (e.g. someone’s face), predict its label (e.g. that person’s name) from a set of...

متن کامل

Variational Continual Learning

This paper develops variational continual learning (VCL), a simple but general framework for continual learning that fuses online variational inference (VI) and recent advances in Monte Carlo VI for neural networks. The framework can successfully train both deep discriminative models and deep generative models in complex continual learning settings where existing tasks evolve over time and enti...

متن کامل

Variational Neural Discourse Relation Recognizer

Implicit discourse relation recognition is a crucial component for automatic discourse-level analysis and nature language understanding. Previous studies exploit discriminative models that are built on either powerful manual features or deep discourse representations. In this paper, instead, we explore generative models and propose a variational neural discourse relation recognizer. We refer to...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • CoRR

دوره abs/1706.02295  شماره 

صفحات  -

تاریخ انتشار 2017